Explanatory Inference under Uncertainty
نویسندگان
چکیده
Abstract. This paper investigates the performance of explanatory or abductive inference in certain hypothesis selection tasks. The strategy is to use various measures of explanatory power to compare competing hypotheses and then make an inference to the best explanation. Computer simulations are used to compare the accuracy of such approaches with a standard approach when uncertainty is present and when several causal scenarios occur including one where the conditions for explaining away are met. Results show that some explanatory approaches can perform well and in certain scenarios they perform much better than the standard approach.
منابع مشابه
Property transmission: an explanatory account of the role of similarity information in causal inference.
Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under conditions of uncertainty, in which property trans...
متن کاملRobust Discretionary Monetary Policy under Cost-Push Shock Uncertainty of Iran’s Economy
T here is always uncertainty about the soundness of an economic model’s structure and parameters. Therefore, central banks normally face with uncertainty about the key economic explanatory relationships. So, policymaker should take into account the uncertainty in formulating monetary policies. The present study is aimed to examine robust optimal monetary policy under uncertainty, by ...
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملErrors in Variables and Properties of Statistical Inference by Lloyd
Lloyd J. Edwards. Errors in Variables and Properties of Statistical Inference (under the direction of Dr. P. K. Sen.) The objective here is to investigate the effects errors in variables have on tests of separate families of linear hypotheses (Le., non-nested linear hypotheses) using the methodology introduced by D. R. Cox (1961, 1962). Two hypotheses are called separate if an arbitrary simple ...
متن کامل